Impact of Customers’ Satisfaction, Values, Habit and Switching Costs on Switching to Hong Kong Digital Banks

Authors

  • Ng Kee Win Author
  • Bert Wolfs Author

DOI:

https://doi.org/10.70301/JOUR/SBS-JABR/2025/13/1/5

Keywords:

Virtual Banks, Digital Banks, Customer

Abstract

This study examines the factors behind retail banking customers in Hong Kong switching their use of traditional retail banks to digital banks utilizing the push-pull-mooring model. Satisfaction was proposed as a push factor. Utilitarian value, hedonic value and social value were proposed as pull factors. Habit and switching costs were proposed as mooring factors. It was hypothesized that all six factors could impact switching behavior. A quantitative survey was conducted with 360 residents of Hong Kong through an online questionnaire. The hypotheses were analyzed and tested using descriptive and inferential statistics. Utilitarian value, habit, and switching costs were found to be impactful to customer switching behavior using the PLS-SEM methodology. Their p values were below the threshold of significance (p < 0.05) at 0.006, 0.001, and 0 respectively. A case study conducted with 12 banking professionals provided further triangulation and insight into these findings. An implication of this study’s findings is that retail banks should pay great attention to the role of utilitarian value to attract customers in Hong Kong

References

Abagissa, J. (2022). The Effects of E-Governance on Customer Satisfaction: The Case of Addis Ababa Water and Sewerage Authority. SBS Journal of Applied Business Research, 10(2), 14-23.

Aboelmaged, M. G., & Gebba, T. R. (2013). Mobile Banking Adoption: An Examination of Technology Acceptance Model and Theory of Planned Behavior. International Journal of Business Research and Development, 2(1), 35-50.

Adusah, A. K., & Brooks, G. P. (2011). Type I Error Inflation of the Separate-Variances Welch t test with Small Sample Sizes when Assumptions are Met. Journal of Modern Applied Statistical Methods, 10(1), 362-372. doi: https://doi.org/10.22237/jmasm/1304224320

Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. doi: https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I., & Fishbein, M. (1980). Understanding Attitudes and Predicting Social Behavior. Prentice Hall.

Albashrawi, M., Kartal, H., Oztekin, A., & Motiwalla, L. (2019). Self-Reported and Computer-Recorded Experience in Mobile Banking: A Multi-Phase Path Analytic Approach. Information Systems Frontiers, 21(4), 776-790. doi: https://doi.org/10.1007/s10796-018-9892-1

Arner, D. W., Barberis, J. N., & Buckley, R. P. (2017). Fintech, Regtech and the Reconceptualization of Financial Regulation. Northwestern Journal of International Law and Business, 37(3), 371-413.

Astrachan, C. B., Patel, V. K., & Wanzenried, G. (2014). A Comparative Study of CB-SEM and PLS-SEM for Theory Development in Family Firm Research. Journal of Family Business Strategy, 5(1), 116-128. doi: https://doi.org/10.1016/j.jfbs.2013.12.002

Bansal, H. S., Taylor, S. F., & St. James, Y. (2005). Migrating to New Service Providers: Toward a Unifying Framework of Consumers’ Switching Behaviors. Journal of the Academy of Marketing Science, 33(1), 96-115. doi: https://doi.org/10.1177/0092070304267928

Barrett, P. (2007). Structural Equation Modeling: Adjudging Model Fit. Personality and Individual Differences, 42(5), 815-824. doi: https://doi.org/10.1016/j.paid.2006.09.018

Bell, S. J., Auh, S., & Smalley, K. (2005). Customer Relationship Dynamics: Service Quality and Customer Loyalty in the Context of Varying Levels of Customer Expertise and Switching Costs. Journal of the Academy of Marketing Science, 33(2), 169-183. doi: https://doi.org/10.1177/0092070304269111

Benbasat, I., & Barki, H. (2007). Quo Vadis, TAM? Journal of the Association for Information Systems, 8(4), 211-218. doi: https://doi.org/10.17705/1jais.00126

Bhat, S., & Raschella, A. (2015). A Study on the Performance of Latvian Bank in their Digitalization. SBS Journal of Applied Business Research, 4(2), 12-28.

Blut, M., Evanschitzky, H., Backhaus, C., Rudd, J., & Marck. M. (2016). Securing Business-to-Business Relationships: The Impact of Switching Costs. Industrial Marketing

86 Management, 52(C), 82-90. doi: https://doi.org/10.1016/j.indmarman.2015.05.010

Boone, H. N., & Boone, D. A. (2012). Analyzing Likert Data. Journal of Extension, 50(2).

Burnham, T. A., Frels, J. K., & Mahajan, V. (2003). Consumer Switching Costs: A Typology, Antecedents, and Consequences. Journal of the Academy of Marketing Science, 31(2), 109-126. doi: https://doi.org/10.1177/0092070302250897

Chang, H. H., Wong, K. H., & Li, S. Y. (2017). Applying Push-Pull-Mooring to Investigate Channel Switching Behaviors: M-shopping Self-efficacy and Switching Costs as Moderators. Electronic Commerce Research and Applications, 24, 50-67. doi: https://doi.org/10.1016/j.elerap.2017.06.002

Chaouali, W., & El Hedhli, K. (2019). Toward a Contagion-Based Model of M-banking Adoption. International Journal of Bank Marketing, 37(1), 69-96. doi: https://doi.org/10.1108/IJBM-05-2017-0096

Chen, Y. H., & Keng, C. J. (2019). Utilizing the Push-Pull-Mooring-Habit Framework to Explore Users’ Intention to Switch from Offline to Online Real-person English Learning Platform. Internet Research, 29(1), 167-193. doi: https://doi.org/10.1108/IntR-09-2017-0343

Chitungo, S. K., & Munongo S. (2013). Extending the Technology Acceptance Model to Mobile Banking Adoption in Rural Zimbabwe. Journal of Business Administration and Education, 3(1), 51-79. doi: https://doi.org/10.1287/mksc.17.3.253

Churchill, G. A., & Suprenant, C. (1982). An Investigation into the Determinants of Customer Satisfaction. Journal of Marketing Research, 19(4), 491-504. doi: https://doi.org/10.1177/002224378201900410

Citibank Hong Kong (2022). Customer Tiering. https://www.citibank.com.hk/english/personal-banking/?lid=HKENCBGBAMITLOverview

Colgate, M., & Lang, B. (2001). Switching Barriers in Consumer Markets: An Investigation of the Financial Services Industry. Journal of Consumer Marketing, 18(4), 332-347. doi: https://doi.org/10.1108/07363760110393001

Collis, J., & Hussey, R. (2014). Business Research (4th ed.). Palgrave Macmillan.

Crabbe, M., Standing, C., Standing, S., & Karjaluoto, H. (2009). An Adoption Model for Mobile Banking in Ghana. International Journal of Mobile Communications, 7(5), 515-543. doi: https://doi.org/10.1504/IJMC.2009.024391

Davis, F. D. (1986). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results (Doctoral Dissertation). MIT Sloan School of Management.

Delgado-Ballester, E., & Munuera-Aleman, J. L. (2001). Brand Trust in the Context of Customer Loyalty. European Journal of Marketing, 35(11/12), 1238-1258. doi: https://doi.org/10.1108/EUM0000000006475

Evelina, T. Y., Kusumawati, A., Nimran, U., & Sunarti (2020). The Influence of Utilitarian Value, Hedonic Value, Social Value, and Perceived Risk on Customer Satisfaction: Sur87

vey of e-commerce Customers in Indonesia. Business: Theory and Practice, 21(2), 613-622. doi: https://doi.org/10.3846/btp.2020.12143

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50. doi: https://doi.org/10.1177/00222437810180010

Gan, C., & Wang, W. (2017). The Influence of Perceived Value on Purchase Intention in Social Commerce Context. Internet Research, 27(4), 772-785. doi: https://doi.org/10.1108/IntR-06-2016-0164

Gounaris, S., & Stathakopoulos, V. (2004). Antecedents and Consequences of Brand Loyalty: An Empirical Study. Journal of Brand Management, 11(4), 283-306. doi: https://doi.org/10.1057/palgrave.bm.2540174

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Springer Cham.

Hair, J. F., & Sarstedt, M. (2021). Explanation Plus Prediction – The Logical Focus of Project Management Research. Project Management Journal, 52(4), 319-322. doi: https://doi.org/10.1177/8756972821999945

Han, H., Kim, Y., & Kim, E. K. (2011). Cognitive, Affective, Conative and Action Loyalty: Testing the Impact of Inertia. International Journal of Hospitality Management, 30(4), 1008-1019. doi: https://doi.org/10.1016/j.ijhm.2011.03.006

Heijden, H. (2004). User Acceptance of Hedonic Information Systems. MIS Quarterly, 28(4), 695-704. doi: https://doi.org/10.2307/25148660

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), 1-21. doi:

https://doi.org/10.1007/s11747-014-0403-8

Hinkle, D. E., Wiersma, W. & Jurs, S. G. (2003). Applied Statistics for the Behavioral Sciences (5th ed.). Houghton Mifflin.

Holbrook, M. B. (2006). Consumption Experience, Customer Value, and Subjective Personal Introspection: An Illustrative Photographic Essay. Journal of Business Research, 59(6), 714-725. doi: https://doi.org/10.1016/j.jbusres.2006.01.008

Holbrook, M. B., & Hirschman, E. C. (1982). The Experiential Aspects of Consumption: Consumer Fantasies, Feelings and Fun. Journal of Consumer Research, 9(2), 132-140. doi: https://doi.org/10.1086/208906

Hong Kong Monetary Authority (2000). Guideline on Authorization of Digital Banks. https://www.hkma.gov.hk/eng/news-and-media/press-releases/2000/05/20000505-3/

Hong Kong Monetary Authority (2019). Granting of Digital Banking Licenses. https://www.hkma.gov.hk/eng/news-and-media/press-releases/2019/05/20190509-3/

Hong Kong Monetary Authority (2018b). Update on the Processing of Digital Bank Applications. https://www.hkma.gov.hk/eng/news-and-media/press-releases/2018/12/20181207-5/#1

88 Hou, A. C. Y., & Shiau, W. L. (2020). Understanding Facebook to Instagram Migration: A Push-Pull Migration Model Perspective. Information Technology & People, 33(1), 272-295. doi: https://doi.org/10.1108/ITP-06-2017-0198

HSBC Hong Kong (2022a). PIN-Protected Security Device. https://www.hsbc.com.hk/help/cybersecurity-and-fraud/device/

HSBC Hong Kong (2022b). Customer Tiering. https://www.hsbc.com.hk/accounts/

Hsieh, J. K., Hsieh, Y. C., Chiu, H. C., & Feng, Y. C. (2012). Post-adoption Switching Behavior for Online Service Substitutes: A Perspective of the Push-Pull-Mooring Framework. Computers in Human Behavior, 28(5), 1912-1920. doi: https://doi.org/10.1016/j.chb.2012.05.010

Hsu, C. L., & Lin, J. C. C. (2016). Effect of Perceived Value and Social Influences on Mobile App Stickiness and In-app Purchase Intention. Technological Forecasting and Social Change, 108, 42-53. doi: https://doi.org/10.1016/j.techfore.2016.04.012

Israel, G.D. (1992). Determining Sample Size. Fact Sheet PEOD-6, Program Evaluation and Organizational Development, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.

Jung, J. S., Han, H. S., & Oh, M. H. (2017). Travelers’ Switching Behavior in the Airline Industry from the Perspective of the Push-Pull-Mooring Framework. Tourism Management, 59, 139-153. doi: https://doi.org/10.1016/j.tourman.2016.07.018

Karahanna, E., & Limayem, M. (2000). E-mail and V-mail Usage: Generalizing across Technologies. Journal of Organizational Computing and Electronic Commerce, 10(1), 49-66. doi: https://doi.org/10.1207/S15327744JOCE100103

Keaveney, S. M. (1995). Customer Switching Behavior in Service Industries: An Explorative Study. Journal of Marketing, 59(2), 71-82. doi: https://doi.org/10.1177/002224299505900206

Kelly, L. M., & Cordeiro, M. (2020). Three Principles of Pragmatism for Research on Organizational Processes. Methodological Innovations, 13(2). doi: https://doi.org/10.1177/2059799120937242

Kim, G., Shin, B. S., & Lee, H. G. (2009). Understanding Dynamics Between Initial Trust and Usage Intentions of Mobile Banking. Information Systems Journal, 19(3), 283-311.

Kim, M., Klinger, D., & Vale, B. (2003). Estimating Switching Costs: The Case of Banking. Journal of Financial Intermediation, 12(1), 25-56. doi: https://doi.org/10.1016/S1042-9573(02)00005-0

Lam, S. Y., Shankar, V., Erramilli, M. K., & Murthy, B. (2004). Customer Value, Satisfaction, Loyalty and Switching Costs: An Illustration from a Business-to-Business Service Context. Journal of the Academy of Marketing Science, 32(3), 293-311. doi:

https://doi.org/10.1177/0092070304263330

Lee, E. S. (1966). A Theory of Migration. Demography, 3(1), 47-57. doi: https://doi.org/10.2307/2060063

Lee, Y. H., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past,

Present, and Future. Communications of the Association for Information Systems, 12. doi: https://doi.org/10.17705/1CAIS.01250

Leedy, P. D., & Ormrod, J. E. (2020). Practical Research: Planning and Design (12th ed.). Pearson.

Lin, H. F. (2011). An Empirical Investigation of Mobile Banking Adoption: The Effect of Innovation Attributes and Knowledge-Based Trust. International Journal of Information Management, 31(3), 252-260. doi: https://doi.org/10.1016/j.ijinfomgt.2010.07.006

Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222-234. doi: https://doi.org/10.1016/j.dss.2010.02.008

Makanyeza, C. (2017), Determinants of Consumers’ Intention to Adopt M-banking Services in Zimbabwe. International Journal of Bank Marketing, 35(6), 997-1017. doi: https://doi.org/10.1108/IJBM-07-2016-0099

Malaquias, R. F., & Hwang, Y. J. (2019). Mobile Banking Use: A Comparative Study with Brazilian and U.S. Participants. International Journal of Information Management, 44, 132-140. doi: https://doi.org/10.1016/j.ijinfomgt.2018.10.004

Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Information Systems Research, 2(1), 173-191. doi: https://doi.org/10.1287/isre.2.3.173

Melnikovas, A. (2018). Towards an Explicit Research Methodology: Adapting Research Onion Model for Future Studies. Journal of Future Studies, 23(2), 29-44. doi: https://doi.org/10.6531/JFS.201812_23(2).0003

Menz, M., Kunisch, S., Birkinshaw, J., Collis, D. J., Foss, N. J., Hoskisson, R. E., & Prescott, J. E. (2021). Corporate Strategy and the Theory of the Firm in the Digital Age. Journal of Management Studies, 58(7), 1695-1720. doi: https://doi.org/10.1111/joms.12760

Moon, B. (1995). Paradigms in Migration Research: Exploring ‘Moorings’ as a Schema. Progress in Human Geography, 19(4), 504-524. doi: https://doi.org/10.1177/030913259501900404

Napitupulu, D. (2017). A Conceptual Model of e-Government Adoption in Indonesia. International Journal on Advanced Science Engineering Information Technology, 7(4), 1471-1478. doi: https://doi.org/10.18517/ijaseit.7.4.2518

Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons.

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A Conceptual Model of Service Quality and Its Implications for Future Research. Journal of Marketing, 49(4), 41-50. doi: https://doi.org/10.1177/002224298504900403

Poggenpoel, M., & Myburgh, S. (2003). The Researcher as Research Instrument in Educational Research: A Possible Threat to Trustworthiness? Education, 124(2), 418-421.

Ranaweera, C., & Neely, A. (2003). Some Moderating Effects on the Service Quality-Cus90

tomer Retention Link. International Journal of Operations and Production Management, 23(2), 230-248. doi: https://doi.org/10.1108/01443570310458474

Rintamaki, T., Kanto, A., Kuusela, H., & Spence, M. T. (2006). Decomposing the value of department store shopping into utilitarian, hedonic and social dimensions: Evidence from Finland. International Journal of Retail and Distribution Management, 34(1), 6-24. doi: https://doi.org/10.1108/09590550610642792

Rogers, E. M. (2003). Diffusion of innovations (5th ed.). Free Press.

Ross, A., & Wilsson, V. L. (2017). Basic and Advanced Statistical Tests. Sense Publishers.

Schmitt, B. H., & Simonson, A. (1997). Marketing Aesthetics: The Strategic Management of Brands, Identity and Image. The Free Press.

Shaikh, A. A., & Karjaluoto, H. (2015). Mobile Banking Adoption: A Literature Review. Telematics and Informatics, 32(1), 129-142. doi: https://doi.org/10.1016/j.tele.2014.05.003

Sheth, J. (2021). New Areas of Research in Marketing Strategy, Consumer Behavior, and Marketing Analytics: The Future is Bright. Journal of Marketing Theory and Practice, 29(1), 3-12. doi: https://doi.org/10.1080/10696679.2020.1860679

Shmueli, G., & Koppius, O. R. (2011). Predictive Analytics in Information Systems Research. MIS Quarterly, 35(3), 553-572 doi: https://doi.org/10.2307/23042796

Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The Elephant in the Room: Predictive Performance of PLS Models. Journal of Business Research, 69(10), 4552-4564. doi: https://doi.org/10.1016/j.jbusres.2016.03.049

Singh, R., & Rosengren, S. (2020). Why do Online Grocery Shoppers switch? An Empirical Investigation of Drivers of Switching in Online Grocery. Journal of Retailing and Consumer Services, 53(C). doi: https://doi.org/10.1016/j.jretconser.2019.101962

Souiden, N., Ladhari, R., & Chaouali, W. (2012). Mobile Banking Adoption: A Systematic Review. International Journal of Bank Marketing, 39(2), 214-241. doi: https://doi.org/10.1108/IJBM-04-2020-0182

Straub, D. W. (1994). The Effect of Culture on It Diffusion - E-Mail and Fax in Japan and the United-States. Information Systems Research, 5(1), 23-47. doi: https://doi.org/10.1287/isre.5.1.23

Susanty, A., Handoko, A., & Puspitasari, N. B. (2020). Push-pull-mooring Framework for e-commerce Adoption in Small and Medium Enterprises. Journal of Enterprise Information Management, 33(2), 381-406. doi: https://doi.org/10.1108/JEIM-08-2019-0227

Tam, C., & Oliveira, T. (2017). Literature Review of Mobile Banking and Individual Performance. International Journal of Bank Marketing, 35(7), 1044-1067. doi: https://doi.org/10.1108/IJBM-09-2015-0143

Venkatesh, V., Morris, M., Davis, G., & Davis, F. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. doi: https://doi.org/10.2307/41410412

Vinzi, V. E., Chin, W. W., Henseler, J., & Wang, H. (2010). Handbook of Partial Least Squares: Concepts, Methods and Applications. Springer.

Wilson, E. V., & Lankton, N. K. (2004). Modelling Patients’ Acceptance of Provider-Delivered E-Health. Journal of the American Medical Informatics Association, 11(4), 241-248. doi: https://doi.org/10.1197/jamia.1475

Wright, D. L., Aquilino, W. S., & Supple, A. J. (1998). A Comparison of Computer-assisted and Paper-and-pencil Self-administered Questionnaires in a Survey on Smoking, Alcohol and Drug Use. Public Opinion Quarterly, 62(3), 331-353. doi: https://doi.org/10.1086/297849

Yu, C. S. (2012). Factors Affecting Individuals to Adopt Mobile Banking: Empirical Evidence from the UTAUT Model. Journal of Electronic Commerce Research, 13(2), 104-121. doi: https://doi.org/10.3390/su13148062

Additional Files

Published

28.02.2025

Issue

Section

Articles

How to Cite

Impact of Customers’ Satisfaction, Values, Habit and Switching Costs on Switching to Hong Kong Digital Banks. (2025). SBS Journal of Applied Business Research, 13(1), 63-91. https://doi.org/10.70301/JOUR/SBS-JABR/2025/13/1/5

Similar Articles

11-19 of 19

You may also start an advanced similarity search for this article.