IMPACT OF ARTIFICIAL INTELLIGENCE (AI) TECHNOLOGIES ON PURCHASE INTENTIONS: EVIDENCE FROM E-COMMERCE AND OMNICHANNEL RETAILING IN CHINA
DOI:
https://doi.org/10.70301/Keywords:
Artificial Intelligence, Online marketing, Online shopping, E-commerceAbstract
This research focuses on the impact of AI on consumers' purchase intentions within the context of e-commerce and omnichannel retailing in China. The study examines how AI technologies influence consumers' purchase intentions in e-commerce and omnichannel retailing in China. By examining these factors and considering moderating effects such as trust, perceived usefulness, and perceived ease of use, the study aims to provide insightful discoveries to businesses operating in the Chinese market and contribute to the global knowledge base. A quantitative survey was conducted to test the hypotheses involving 563 Chinese e-commerce consumers who completed an online questionnaire. Descriptive and inferential statistics were used to analyze and test the hypotheses. The results indicated significant impacts on usefulness, informativeness, irritation, and purchase intention, with p-values below the significance threshold (p < 0.05), specifically <0.001 for the key variables. A case study involving 30 Chinese consumers with relevant experience was conducted to complement these findings, providing additional validation and triangulation of the results. This research aims to address the research gap by investigating how AI technologies influence consumers' purchase intentions in the Chinese e-commerce market and omnichannel retailing. The findings will benefit businesses, contribute to global knowledge, and encourage further research.
References
ABU-BADER, S. H., & Abu-Bader, P. and C. of R. S. at the S. of S. W. S. H. (2021). Using Statistical Methods in Social Science Research: With a Complete SPSS Guide. Oxford University Press.
Adadi, A., & Berrada, M. (2018). Peeking Inside the Black Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138–52160. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2870052
Ajzen, I. (1985). From Intentions to Actions: A Theory of Planned Behavior. In J. Kuhl & J. Beckmann (Eds.), Action Control: From Cognition to Behavior (pp. 11–39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2
Alareeni, B., & Hamdan, A. (2022). Impact of Artificial Intelligence, and the Fourth Industrial Revolution on Business Success: Proceedings of The International Conference on Business and Technology (ICBT 2021). Springer Nature.
Almalki, S. (2016). Integrating Quantitative and Qualitative Data in Mixed Methods Research—Challenges and Benefits. Journal of Education and Learning, 5(3), 288–296.
Amatriain, X., & Basilico, J. (2015). Recommender Systems in Industry: A Netflix Case Study. In F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 385–419). Springer US. https://doi.org/10.1007/978-1-4899-7637-6_11
Ananda, N. A., Fietroh, M. N., Mikhratunnisa, M., & Rizqi, R. M. (2020). Theory Acceptance Model and Purchase Intention in Online Shopping. 165–169. https://doi.org/10.2991/assehr.k.200827.042
Anderson-Cook, C. M. (2005). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Journal of the American Statistical Association, 100(470), 708–708. https://doi.org/10.1198/jasa.2005.s22
Antons, D., & Breidbach, C. F. (2018). Big Data, Big Insights? Advancing Service Innovation and Design With Machine Learning. Journal of Service Research, 21(1), 17–39. https://doi.org/10.1177/1094670517738373
Baabdullah, A. M., Alsulaimani, A. A., Allamnakhrah, A., Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2022). Usage of augmented reality (AR) and development of e-learning outcomes: An empirical evaluation of students’ e-learning experience. Computers & Education, 177, 104383. https://doi.org/10.1016/j.compedu.2021.104383
Bauer, J., & Jannach, D. (2018). Optimal pricing in e-commerce based on sparse and noisy data. Decision Support Systems, 106, 53–63. https://doi.org/10.1016/j.dss.2017.12.002
Baum, S. D. (2018). Countering Superintelligence Misinformation. Information, 9(10), Article 10. https://doi.org/10.3390/info9100244
Bawack, R. E., Wamba, S. F., Carillo, K. D. A., & Akter, S. (2022). Artificial intelligence in E-Commerce: A bibliometric study and literature review. Electronic Markets, 32(1), 297–338. https://doi.org/10.1007/s12525-022-00537-z
Bhagat, R., Chauhan, V., & Bhagat, P. (2022). Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight, ahead-of-print(ahead-of-print). https://doi.org/10.1108/FS-10-2021-0218
Blair, E. (2015). A reflexive exploration of two qualitative data coding techniques. Journal of Methods and Measurement in the Social Sciences, 6(1), Article 1. https://doi.org/10.2458/v6i1.18772
Bostrom, N. (2014). Superintelligence: Paths, Dangers, Strategies. Oxford University Press.
Bougie, R., & Sekaran, U. (2019). Research Methods For Business: A Skill Building Approach. John Wiley & Sons.
Bradlow, E. T., Gangwar, M., Kopalle, P., & Voleti, S. (2017). The Role of Big Data and Predictive Analytics in Retailing. Journal of Retailing, 93(1), 79–95. https://doi.org/10.1016/j.jretai.2016.12.004
Briel, F. (2018). The future of omnichannel retail: A four-stage Delphi study. Technological Forecasting and Social Change, 132, 217–229. https://doi.org/10.1016/j.techfore.2018.02.004
Brynjolfsson, E., & McAfee, A. P. (2014). The second machine age: Work, progress, and prosperity in a time of brilliant technologies, 1st Edition. https://www.semanticscholar.org/paper/The-second-machine-age%3A-work%2C-progress%2C-and-in-a-of-Brynjolfsson-McAfee/85dea1a5202b5b38e34212798fa4701e02e03ba3
Brynjolfsson, E., & Mitchell, T. (2017). What can machine learning do? Workforce implications. Science, 358(6370), 1530–1534. https://doi.org/10.1126/science.aap8062
Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlstrom, P., Henke, N., & Trench, M. (2017). Artificial intelligence: The next digital frontier? https://apo.org.au/node/210501
Campbell, D. T. (1986). Relabeling internal and external validity for applied social scientists. New Directions for Program Evaluation, 1986(31), 67–77. https://doi.org/10.1002/ev.1434
Campbell, M., Horne, A. J., & Hsu, F. (2002). Deep Blue. Artificial Intelligence, 134(1), 57–83. https://doi.org/10.1016/S0004-3702(01)00129-1
Capgemini. (2020). Global online population internet usage confidence 2020. Statista. https://www.statista.com/statistics/1132228/share-offline-population-worldwide-comfort-using-internet/
Carnein, M., Homann, L., Trautmann, H., & Vossen, G. (2019). A Recommender System Based on Omni-Channel Customer Data. 2019 IEEE 21st Conference on Business Informatics (CBI), 01, 65–74. https://doi.org/10.1109/CBI.2019.00015
Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. da P., Basto, J. P., & Alcalá, S. G. S. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. https://doi.org/10.1016/j.cie.2019.106024
Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503
Chen, Q., & Wells, W. D. (1999). Attitude toward the Site. Journal of Advertising Research, 39(5), 27–38.
Chen, X., Zhang, Y., & Qin, Z. (2019). Dynamic Explainable Recommendation Based on Neural Attentive Models. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), Article 01. https://doi.org/10.1609/aaai.v33i01.330153
Chen, Y., Lee, J.-Y., & Singal, A. G. (2020, March 17). Improving Cancer Outreach Effectiveness Through Targeting and Economic Assessments: Insights from a Randomized Field Experiment—Yixing Chen, Ju-Yeon Lee, Shrihari (Hari) Sridhar, Vikas Mittal, Katharine McCallister, Amit G. Singal, 2020. https://journals.sagepub.com/doi/full/10.1177/0022242920913025
Christensen, C. M., Raynor, M. E., & Anthony, S. D. (2003, March 9). Six Keys to Building New Markets by Unleashing Disruptive Innovation. HBS Working Knowledge. http://hbswk.hbs.edu/item/six-keys-to-building-new-markets-by-unleashing-disruptive-innovation
Chu, C., & Lu, H. (2007). Factors influencing online music purchase intention in Taiwan. Internet Research, 17(2), 139–155. https://doi.org/10.1108/10662240710737004
Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Mal, S. (2018, September 16). Notes from the AI frontier: Applications and value of deep learning - Blogging on Business. https://bobmorris.biz/notes-from-the-ai-frontier-applications-and-value-of-deep-learning-2
Cigref. (2018). Cigref—L’intelligence artificielle en entreprise: Stratégies, gouvernances et challenges de la data intelligence. 40.
Cirqueira, D., Nedbal, D., Helfert, M., & Bezbradica, M. (2020, August 18). Scenario-Based Requirements Elicitation for User-Centric Explainable AI | SpringerLink. Scenario-Based Requirements Elicitation for User-Centric Explainable AI. https://link.springer.com/chapter/10.1007/978-3-030-57321-8_18
Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Academic Press.
Crawford, K., Whittaker, M., Elish, M. C., Barocas, S., Plasek, A., & Ferryman, K. (2016, July 7). The Social and Economic Implications of Artificial Intelligence Technologies in the Near-Term. https://artificialintelligencenow.com/media/documents/AINowSummaryReport_3_RpmwKHu.pdf
Creswell, J. W., & Creswell, J. D. (2017). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.
Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). SAGE Publications.
Daniel, Zhang, Maslej, N., Brynjolfsson, E., Etchemendy, J., Lyons, T., Manyika, J., Ngo, H., Niebles, J. C., Sellitto, M., Sakhaee, E., Shoham, Y., Clark, J., & Perrault, R. (2022, March). The AI Index 2022 Annual Report. https://aiindex.stanford.edu/report/
Davenport, T. H. (2018). The AI Advantage: How to Put the Artificial Intelligence Revolution to Work. The MIT Press. https://doi.org/10.7551/mitpress/11781.001.0001
Davis, F. D. (1987). User acceptance of information systems: The technology acceptance model (TAM) [Working Paper]. http://deepblue.lib.umich.edu/handle/2027.42/35547
Davis, F. D. (1989). Perceived Usefulness, Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
Dekimpe, M. G. (2020). Retailing and retailing research in the age of big data analytics. International Journal of Research in Marketing, 37(1), 3–14. https://doi.org/10.1016/j.ijresmar.2019.09.001
Dennis, C., Merrilees, B., Jayawardhena, C., & Tiu Wright, L. (2009). E‐consumer behaviour. European Journal of Marketing, 43(9/10), 1121–1139. https://doi.org/10.1108/03090560910976393
Derrick, B., & White, P. (2016). Why Welch’s test is Type I error robust. The Quantitative Methods for Psychology, 12(1), 30–38. https://doi.org/10.20982/tqmp.12.1.p030
Di Francescomarino, C., & Maggi, F. M. (2020). Preface to the Special Issue on Artificial Intelligence for Business Process Management 2018. Journal on Data Semantics, 9(1), 1–1. https://doi.org/10.1007/s13740-020-00111-w
Ding, J. (2018, March). Deciphering China’s AI Dream. Future of Humanity Institute. https://www.fhi.ox.ac.uk/wp-content/uploads/Deciphering_Chinas_AI-Dream.pdf
Dubey, R., Gunasekaran, A., Childe, S. J., Papadopoulos, T., Hazen, B. T., & Roubaud, D. (2018). Examining top management commitment to TQM diffusion using institutional and upper echelon theories. International Journal of Production Research, 56(8), 2988–3006. https://doi.org/10.1080/00207543.2017.1394590
Ducoffe, R. H. (1995). How Consumers Assess the Value of Advertising. Journal of Current Issues & Research in Advertising (CTC Press), 17(1), 1. https://doi.org/10.1080/10641734.1995.10505022
Ducoffe, R. H. (1996). Advertising value and advertising the Web. Journal of Advertising Research, 36(5). https://elibrary.ru/item.asp?id=2745486
Dwidienawati, D., Tjahjana, D., Abdinagoro, S. B., Gandasari, D., & Munawaroh. (2020). Customer review or influencer endorsement: Which one influences purchase intention more? Heliyon, 6(11), e05543. https://doi.org/10.1016/j.heliyon.2020.e05543
Dzyabura, D., & Hauser, J. R. (2019). Recommending Products When Consumers Learn Their Preference Weights. Marketing Science, 38(3), 417–441. https://doi.org/10.1287/mksc.2018.1144
Epler, P. (2019). Types of Case Studies. In Case Study Methodology in Higher Education (pp. 20–46). IGI Global. https://doi.org/10.4018/978-1-5225-9429-1.ch002
Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181. https://doi.org/10.1016/j.tra.2015.04.003
Fang, B., Liao, S., Xu, K., Cheng, H., Zhu, C., & Chen, H. (2012). A novel mobile recommender system for indoor shopping. Expert Systems with Applications, 39(15), 11992–12000. https://doi.org/10.1016/j.eswa.2012.03.038
Fernández-García, A. J., Iribarne, L., Corral, A., Criado, J., & Wang, J. Z. (2019). A recommender system for component-based applications using machine learning techniques. Knowledge-Based Systems, 164, 68–84. https://doi.org/10.1016/j.knosys.2018.10.019
Ferreira, K. J., Lee, B. H. A., & Simchi-Levi, D. (2016). Analytics for an Online Retailer: Demand Forecasting and Price Optimization. Manufacturing & Service Operations Management, 18(1), 69–88. https://doi.org/10.1287/msom.2015.0561
Fetters, M. D., & Freshwater, D. (2015, April). The 1 + 1 = 3 Integration Challenge—Michael D. Fetters, Dawn Freshwater, 2015. https://journals.sagepub.com/doi/full/10.1177/1558689815581222
Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE Publications.
Fjelland, R. (2020). Why general artificial intelligence will not be realized. Humanities and Social Sciences Communications, 7(1), 1–9. https://doi.org/10.1057/s41599-020-0494-4
Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. https://doi.org/10.1007/s11023-018-9482-5
Fu, Z., Xian, Y., Gao, R., Zhao, J., Huang, Q., Ge, Y., Xu, S., Geng, S., Shah, C., Zhang, Y., & de Melo, G. (2020). Fairness-Aware Explainable Recommendation over Knowledge Graphs. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 69–78). Association for Computing Machinery. https://doi.org/10.1145/3397271.3401051
Furman, J., & Seamans, R. (2019). AI and the Economy. Innovation Policy and the Economy, 19, 161–191. https://doi.org/10.1086/699936
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137–144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Ganesh, J., Reynolds, K. E., Luckett, M., & Pomirleanu, N. (2010). Online Shopper Motivations, and e-Store Attributes: An Examination of Online Patronage Behavior and Shopper Typologies. Journal of Retailing, 86(1), 106–115. https://doi.org/10.1016/j.jretai.2010.01.003
Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14), 2627–2636. https://doi.org/10.1016/S1352-2310(97)00447-0
Gravetter, F. J., & Wallnau, L. B. (2017). Statistics for the behavioral sciences (10th ed.). Cengage Learning.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and Tam in Online Shopping: An Integrated Model. MIS Quarterly, 27(1), 51–90. https://doi.org/10.2307/30036519
Gibney, E. (2016). Google's AI algorithm masters the ancient game of Go. Nature, 529(7587), 445–446. https://doi.org/10.1038/529445a
Goli, A., Golmohammadi, A.-M., & Edalatpanah, S. A. (2022). Application of Artificial Intelligence in Forecasting the Demand for Supply Chains Considering Industry 4.0. In A Roadmap for Enabling Industry 4.0 by Artificial Intelligence (pp. 43–55). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119905141.ch4
Gomez-Uribe, C. A., & Hunt, N. (2016). The Netflix Recommender System: Algorithms, Business Value, and Innovation. ACM Transactions on Management Information Systems, 6(4), 13:1-13:19. https://doi.org/10.1145/2843948
Great Learning Editorial Team. (2024). What is Artificial Intelligence in 2024? mygreatlearning.com. https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/
Grewal, D., Roggeveen, A. L., & Nordfält, J. (2017). The Future of Retailing. Journal of Retailing, 93(1), 1–6. https://doi.org/10.1016/j.jretai.2016.12.008
Guest, G., & Namey, E. (2020, May 5). A simple method to assess and report thematic saturation in qualitative research | PLOS ONE. A Simple Method to Assess and Report Thematic Saturation in Qualitative Research. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232076
Gülen, K. (2023, January 23). Artificial Intelligence In Supply Chain Management—Dataconomy. https://dataconomy.com/2023/01/artificial-intelligence-supply-chain/
Guo, J., Zhang, W., Fan, W., & Li, W. (2018). Combining Geographical and Social Influences with Deep Learning for Personalized Point-of-Interest Recommendation. Journal of Management Information Systems, 35(4), 1121–1153. https://doi.org/10.1080/07421222.2018.1523564
Gupta, V., & Zhang, X. (2022, October 4). According to IDC, China’s Artificial Intelligence Market Will Exceed US$26.7 Billion by 2026. IDC: The Premier Global Market Intelligence Company. https://www.idc.com/getdoc.jsp?containerId=prAP49740122
Han, D. (2012). A Study on Consumers’ Purchasing Intention According to Message Frame Regarding Food Safety Issues. https://library.ndsu.edu/ir/handle/10365/26681
Hausman, A. V., & Siekpe, J. S. (2009). The effect of web interface features on consumer online purchase intentions. Journal of Business Research, 62(1), 5–13. https://doi.org/10.1016/j.jbusres.2008.01.018
He, X., Chen, T., Kan, M.-Y., & Chen, X. (2015). TriRank: Review-aware Explainable Recommendation by Modeling Aspects. Proceedings of the 24th ACM International Conference on Information and Knowledge Management, 1661–1670. https://doi.org/10.1145/2806416.2806504
Heins, C. (2022). Artificial intelligence in retail – a systematic literature review. Foresight, ahead-of-print(ahead-of-print). https://doi.org/10.1108/FS-10-2021-0210
Hennink, M. M., Kaiser, B. N., & Marconi, V. C. (2016, September 26). Code Saturation Versus Meaning Saturation: How Many Interviews Are Enough? - Monique M. Hennink, Bonnie N. Kaiser, Vincent C. Marconi, 2017. https://journals.sagepub.com/doi/full/10.1177/1049732316665344
Hoenig, J. M., & Heisey, D. M. (2001). The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis. The American Statistician, 55(1), 19–24.
Holt, M. (2018). Artificial Intelligence in Modern Society. Integrated Studies. https://digitalcommons.murraystate.edu/bis437/138
Hossan, D., Mansor, Z. D., & Jaharuddin, N. S. (2023). Research Population and Sampling in Quantitative Study. International Journal of Business and Technopreneurship (IJBT), 13(3), Article 3. https://doi.org/10.58915/ijbt.v13i3.263
Huang, E. (2008). Use and gratification in e‐consumers. Internet Research, 18(4), 405–426. https://doi.org/10.1108/10662240810897817
Huang, J., & Zhou, L. (2018). Timing of web personalization in mobile shopping: A Uses and Gratifications Theory perspective. Computers in Human Behavior, 88, 103–113. https://doi.org/10.1016/j.chb.2018.06.035
Huang, M. H., Rust, R., & Maksimovic, V. (2019). The Feeling Economy: Managing in the Next Generation of Artificial Intelligence (AI). California Management Review, 61(4), 43–65. https://doi.org/10.1177/0008125619863436
Huang, M. H., & Rust, R. T. (2017). Technology-driven service strategy. Journal of the Academy of Marketing Science, 45(6), 906–924. https://doi.org/10.1007/s11747-017-0545-6
Huang, M. H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
Huang, M. H., & Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9
Huang, X., Fang, Q., Qian, S., Sang, J., Li, Y., & Xu, C. (2019). Explainable Interaction-driven User Modeling over Knowledge Graph for Sequential Recommendation. Proceedings of the 27th ACM International Conference on Multimedia, 548–556. https://doi.org/10.1145/3343031.3350893
Islam, M. T., Ayon, E. H., Ghosh, B. P., Md, S. C., Shahid, R., Puja, A. R., Rahman, S., Bhuiyan, M. S., & Nguyen, T. N. (2024). Revolutionizing Retail: A Hybrid Machine Learning Approach for Precision Demand Forecasting and Strategic Decision-making in Global Commerce. Journal of Computer Science and Technology Studies, 6(1), Article 1. https://doi.org/10.32996/jcsts.2024.6.1.4
Ivanov, D., Dolgui, A., & Sokolov, B. (2018). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57, 1–18. https://doi.org/10.1080/00207543.2018.1488086
Jain, A. K., Ross, A., & Prabhakar, S. (2004). An Introduction to Biometric Recognition. IEEE Transactions on Circuits & Systems for Video Technology, 14(1), 4–20. https://doi.org/10.1109/TCSVT.2003.818349
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Jeffs, V. (2017). Artificial Intelligence and Improving the Customer Experience. https://infotech.report/Resources/Whitepapers/1b063c81-6a3d-49af-a7aa-452cacc993c2_AI-Improving-Customer-Experience.pdf
Johnston, M. P. (2017). Secondary Data Analysis: A Method of which the Time Has Come. Qualitative and Quantitative Methods in Libraries, 3(3), Article 3.
Jones, R. (2024, April 10). Council Post: How AI Is Revolutionizing E-Commerce. Forbes. https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2024/04/10/how-ai-is-revolutionizing-e-commerce/
Kamble, S. S., Gunasekaran, A., & Sharma, R. (2020). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management, 52, 101967. https://doi.org/10.1016/j.ijinfomgt.2019.05.023
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016
Kamis, A. A., & Stohr, E. A. (2006). Parametric search engines: What makes them effective when shopping online for differentiated products? Information & Management, 43(7), 904–918. https://doi.org/10.1016/j.im.2006.08.006
Kamuangu, P. (2024). A Review on Financial Fraud Detection using AI and Machine Learning. Journal of Economics, Finance and Accounting Studies, 6, 67–77. https://doi.org/10.32996/jefas.2024.6.1.7
Kanal, L. N. (2003). Perceptron. In Encyclopedia of Computer Science (pp. 1383–1385). John Wiley and Sons Ltd.
Katz, E., Blumler, J. G., & Gurevitch, M. (1973). Uses and Gratifications Research. Public Opinion Quarterly, 37(4), 509. https://doi.org/10.1086/268109
Khashman, A. (2009). Application of an emotional neural network to facial recognition. Neural Computing and Applications, 18(4), 309–320. https://doi.org/10.1007/s00521-008-0212-4
Kiseleva, J., Williams, K., Hassan Awadallah, A., Crook, A. C., Zitouni, I., & Anastasakos, T. (2016). Predicting User Satisfaction with Intelligent Assistants. Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, 45–54. https://doi.org/10.1145/2911451.2911521
Knopf, J. W. (2006). Doing a Literature Review. PS: Political Science & Politics, 39(1), 127–132. https://doi.org/10.1017/S1049096506060264
Kohn, M. S., Sun, J., Knoop, S., Shabo, A., Carmeli, B., Sow, D., Syed-Mahmood, T., & Rapp, W. (2014). IBM’s Health Analytics and Clinical Decision Support. Yearbook of Medical Informatics, 23(1), 154–162. https://doi.org/10.15265/IY-2014-0002
Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689–702. https://doi.org/10.1016/j.ejor.2016.10.031
Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2019, July 4). Understanding the Role of Artificial Intelligence in Personalized Engagement Marketing—V. Kumar, Bharath Rajan, Rajkumar Venkatesan, Jim Lecinski, 2019. https://journals.sagepub.com/doi/abs/10.1177/0008125619859317
Kuzey, C., Uyar, A., & Delen, D. (2014). The impact of multinationality on firm value: A comparative analysis of machine learning techniques. Decision Support Systems, 59, 127–142. https://doi.org/10.1016/j.dss.2013.11.001
Lagunas, J. (2022, July 15). Optimizing Supply Chain Visibility & Efficiency with AI |. https://www.accenture.com/us-en/insights/artificial-intelligence/reinventing-the-supply-chain
Lam, B., Calderon, R. F., & Entrup, C. (2022, November 28). Intelligent enterprise fueling the supply chain of the future. Deloitte Insights. https://www2.deloitte.com/xe/en/insights/focus/supply-chain/digital-brain-supply-chain-management-with-machine-learning.html
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), Article 7553. https://doi.org/10.1038/nature14539
Lee, H., Jung, T. H., tom Dieck, M. C., & Chung, N. (2020). Experiencing immersive virtual reality in museums. Information & Management, 57(5), N.PAG-N.PAG. https://doi.org/10.1016/j.im.2019.103229
Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20–23. https://doi.org/10.1016/j.mfglet.2018.09.002
Lee, S., & Lee, D. K. (2018). What is the proper way to apply the multiple comparison test? Korean Journal of Anesthesiology, 71(5), 353–360. https://doi.org/10.4097/kja.d.18.00242
Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communications of the Association for Information Systems, 12(1). https://doi.org/10.17705/1CAIS.01250
Li, Y., Yi, J., Chen, H., Peng, D., Li, Y., Yi, J., Chen, H., & Peng, D. (2021). Theory and application of artificial intelligence in financial industry. Data Science in Finance and Economics, 1(2), Article DSFE-01-02-006. https://doi.org/10.3934/DSFE.2021006
Lin, H. (2007). The role of online and offline features in sustaining virtual communities: An empirical study. Internet Research, 17(2), 119–138. https://doi.org/10.1108/10662240710736997
Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent Neural Networks for Sequence Learning (No. arXiv:1506.00019). arXiv. https://doi.org/10.48550/arXiv.1506.00019
Loomis, D. K., & Paterson, S. (2018). A comparison of data collection methods: Mail versus online surveys. Journal of Leisure Research, 49(2), 133–149. https://doi.org/10.1080/00222216.2018.1494418
Luo, X. (2002). Uses and Gratifications Theory and E-Consumer Behaviors. Journal of Interactive Advertising, 2(2), 34–41. https://doi.org/10.1080/15252019.2002.10722060
Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Marketing Science, 38(6), 937–947.
Machi, L. A., & McEvoy, B. T. (2012). The Literature Review: Six Steps to Success. Corwin Press.
MacKenzie, I., Meyer, C., & Noble, S. (2013, October 1). How retailers can keep up with consumers | McKinsey. How Retailers Can Keep up with Consumers. https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
Margaret, S. M. C. (Samantha, & Pun, J. K.-H. (2024). Researching English Medium Instruction: Quantitative Methods for Students and Researchers. Cambridge University Press.
Martin, K. (2019). Ethical Implications and Accountability of Algorithms. Journal of Business Ethics, 160(4), 835–850. https://doi.org/10.1007/s10551-018-3921-3
Matsuo, Y., LeCun, Y., Sahani, M., Precup, D., Silver, D., Sugiyama, M., Uchibe, E., & Morimoto, J. (2022). Deep learning, reinforcement learning, and world models. Neural Networks, 152, 267–275. https://doi.org/10.1016/j.neunet.2022.03.037
Mazurek, K. (2019). Human vs. Artificial Intelligence—A consumer behavioral study on advice taking among Gen Y. https://doi.org/10.13140/RG.2.2.11214.20807
McCarthy, J. (2004). WHAT IS ARTIFICIAL INTELLIGENCE? 14.
McKim, C. A. (2017). The Value of Mixed Methods Research: A Mixed Methods Study. Journal of Mixed Methods Research, 11(2), 202–222. https://doi.org/10.1177/1558689815607096
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa … examine the variables influencing using artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37. https://doi.org/10.1016/j.chb.2019.05.009
Miles, M. B., Huberman, A. M., & Saldaña, J. (2014). Qualitative data analysis: A methods sourcebook (3rd ed.). SAGE Publications.
Misischia, C. V., Poecze, F., & Strauss, C. (2022). Chatbots in customer service: Their relevance and impact on service quality. Procedia Computer Science, 201, 421–428. https://doi.org/10.1016/j.procs.2022.03.055
Misra, K., Schwartz, E. M., & Abernethy, J. (2019). Dynamic Online Pricing with Incomplete Information Using Multiarmed Bandit Experiments. Marketing Science, 38(2), 226–252. https://doi.org/10.1287/mksc.2018.1129
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016, December 1). The ethics of algorithms: Mapping the debate—Brent Daniel Mittelstadt, Patrick Allo, Mariarosaria Taddeo, Sandra Wachter, Luciano Floridi, 2016. https://journals.sagepub.com/doi/full/10.1177/2053951716679679
Mobarakeh, N. A., Shahzad, M. K., Baboli, A., & Tonadre, R. (2017). Improved Forecasts for uncertain and unpredictable Spare Parts Demand in Business Aircrafts with Bootstrap Method. IFAC-PapersOnLine, 50(1), 15241–15246. https://doi.org/10.1016/j.ifacol.2017.08.2379
Mora, D., Jain, S., Nalbach, O., & Werth, D. (2020). Holographic Recommendations in Brick-and-Mortar Stores. AMCIS 2020 Proceedings. https://aisel.aisnet.org/amcis2020/sig_hci/sig_hci/12
Mukumbang, F. C. (2023). Reproductive Theorizing: A Contribution of Critical Realism to Mixed Methods Research. Journal of Mixed Methods Research, 17(1), 93–114. https://doi.org/10.1177/15586898211049847
Nasution, M., Rossanty, Y., Ariffin, K., & Zaini, N. (2019). An empirical examination of the factors influencing consumer’s purchase intention toward online shopping. Journal of Business & Retail Management Research, 13. https://doi.org/10.24052/JBRMR/V13IS04/ART-02
NEEDHAM, Mass. (2022, September 12). Artificial Intelligence Spending Grew 20.7% Worldwide in 2021, According to IDC. IDC: The Premier Global Market Intelligence Company. https://www.idc.com/getdoc.jsp?containerId=prUS49670122
Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers Inc.
Omar, J., Márquez, Á., & Jürgen, Z. (2018, September 2). Augmented Reality Based Recommending in the Physical World—Digitale Bibliothek—Gesellschaft für Informatik e.V. https://dl.gi.de/handle/20.500.12116/16897
Pantano, E., Rese, A., & Baier, D. (2017). Enhancing the online decision-making process using augmented reality: A two-country comparison of youth markets. Journal of Retailing and Consumer Services, 38, 81–95. https://doi.org/10.1016/j.jretconser.2017.05.011
Parise, S., Guinan, P. J., & Kafka, R. (2016). Solving the crisis of immediacy: How digital technology can transform the customer experience. Business Horizons, 59(4), 411–420. https://doi.org/10.1016/j.bushor.2016.03.004
Pattnaik, D., Ray, S., & Raman, R. (2024). Artificial intelligence and machine learning applications in the financial services industry: A bibliometric review. Heliyon, 10(1), e23492. https://doi.org/10.1016/j.heliyon.2023.e23492
Pelletier, M. J., Krallman, A., Adams, F. G., & Hancock, T. (2020). One size does not fit all: A uses and gratifications analysis of social media platforms. Journal of Research in Interactive Marketing, 14(2), 269–284. https://doi.org/10.1108/JRIM-10-2019-0159
Pimenidis, E., Polatidis, N., & Mouratidis, H. (2019). Mobile recommender systems: Identifying the major concepts. Journal of Information Science, 45(3), 387–397. https://doi.org/10.1177/0165551518792213
Piotrowicz, W., & Cuthbertson, R. (2014). Introduction to the Special Issue Information Technology in Retail: Toward Omnichannel Retailing. International Journal of Electronic Commerce, 18(4), 5–16. https://doi.org/10.2753/JEC1086-4415180400
Pitt, C. S., Bal, A. S., & Plangger, K. (2020). New approaches to psychographic consumer segmentation: Exploring fine art collectors using artificial intelligence, automated text analysis, and correspondence analysis. European Journal of Marketing, 54(2), 305–326. https://doi.org/10.1108/EJM-01-2019-0083
PricewaterhouseCoopers. (2023, June 26). Global Consumer Insights Pulse Survey June 2023. PwC. https://www.pwc.com/gx/en/industries/consumer-markets/consumer-insights-survey.html
Priore, P., Ponte, B., Rosillo, R., & de la Fuente, D. (2019). Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. International Journal of Production Research, 57(11), 3663–3677. https://doi.org/10.1080/00207543.2018.1552369
Punch, K. F. (2013). Introduction to Social Research: Quantitative and Qualitative Approaches. SAGE.
Qin, Y. S. (2020). Fostering brand-consumer interactions in social media: The role of social media uses and gratifications. Journal of Research in Interactive Marketing, 14(3), 337–354. https://doi.org/10.1108/JRIM-08-2019-0138
Rahman, M. S. (2020). The Advantages and Disadvantages of Using Qualitative and Quantitative Approaches and Methods in Language “Testing and Assessment” Research: A Literature Review. https://doi.org/10.5539/jel.v6n1p102
Ransbotham, S., Kiron, D., Gerbert, P., & Reeves, M. (2017). Reshaping Business With Artificial Intelligence. MIT Sloan Management Review. https://sloanreview.mit.edu/projects/reshaping-business-with-artificial-intelligence/
Ravitch, S. M., & Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research (2nd ed.). SAGE Publications.
Reis, H. T., & Judd, C. M. (2000). Handbook of Research Methods in Social and Personality Psychology. Cambridge University Press.
Research and Markets. (2019). Artificial Intelligence in China’s Retail Industry - Forecast to 2025: A $1.68 Billion Opportunity - ResearchAndMarkets.com. Business Wire (English).
Resnik, D. B. (2020, December 23). What Is Ethics in Research and Why Is It Important? National Institute of Environmental Health Sciences. https://www.niehs.nih.gov/research/resources/bioethics/whatis
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778
Richey Jr., R. G., Chowdhury, S., Davis-Sramek, B., Giannakis, M., & Dwivedi, Y. K. (2023). Artificial intelligence in logistics and supply chain management: A primer and roadmap for research. Journal of Business Logistics, 44(4), 532–549. https://doi.org/10.1111/jbl.12364
Rigby, D. (2011). The Future of Shopping. Harvard Business Review, 89(12), 64–75.
Rothman, K. J., Greenland, S., & Lash, T. L. (2008). Modern Epidemiology. Lippincott Williams & Wilkins.
Rubio-Drosdov, E., Díaz-Sánchez, D., Almenárez, F., Arias-Cabarcos, P., & Marín, A. (2017). Seamless human-device interaction in the Internet of Things. IEEE Transactions on Consumer Electronics, 63(4), 490–498. IEEE Transactions on Consumer Electronics. https://doi.org/10.1109/TCE.2017.015076
Ruggiero, T. E. (2000). Uses and Gratifications Theory in the 21st Century. Mass Communication and Society, 3(1), 3–37. https://doi.org/10.1207/S15327825MCS0301_02
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (Fourth edition). Pearson.
Santos, J., Rodrigues, J. J. P. C., Silva, B. M. C., Casal, J., Saleem, K., & Denisov, V. (2016). An IoT-based mobile gateway for intelligent personal assistants on mobile health environments. Journal of Network and Computer Applications, 71, 194–204. https://doi.org/10.1016/j.jnca.2016.03.014
Saunders, M. N. K., Lewis, P., & Thornhill, A. (2023, March 20). Research Methods for Business Students Ninth Edition. https://www.pearson.com/nl/en_NL/higher-education/subject-catalogue/business-and-management/saunders-research-methods-for-business-students-9ed.html
Schoemann, A. M., Boulton, A. J., & Short, S. D. (2017, June 15). Determining Power and Sample Size for Simple and Complex Mediation Models—Alexander M. Schoemann, Aaron J. Boulton, Stephen D. Short, 2017. https://journals.sagepub.com/doi/abs/10.1177/1948550617715068
Shen, K., Tong, X., Wu, T., & Zhang, F. (2022, June 7). The next frontier for AI in China | McKinsey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-next-frontier-for-ai-in-china-could-add-600-billion-to-its-economy
Shields, P. M., & Rangarajan, N. (2013). A playbook for research methods: Integrating conceptual frameworks and project management. New Forums Press.
Siddappa, S., & Hegde, V. K. G. (2023). Artificial intelligence and technology for operational efficiency in retail stores. International Journal of Big Data Management, 3(1), 51–65. https://doi.org/10.1504/IJBDM.2023.133465
Sikdar, S. (2018). Artificial intelligence, its impact on innovation, and the Google effect. Clean Technologies and Environmental Policy, 20(1), 1–2. https://doi.org/10.1007/s10098-017-1478-y
Singh, S. (2018). Cousins of Artificial Intelligence. towardssciencedata.com. https://towardsdatascience.com/cousins-of-artificial-intelligence-dda4edc27b55
Simonite, T. (2015, May 13). Baidu’s Artificial-Intelligence Supercomputer Beats Google at Image Recognition. MIT Technology Review. https://www.technologyreview.com/2015/05/13/168197/baidus-artificial-intelligence-supercomputer-beats-google-at-image-recognition/
Skaaning, S.-E. (2018). Different Types of Data and the Validity of Democracy Measures. Politics and Governance, 6(1), 105–116. https://doi.org/10.17645/pag.v6i1.1183
Song, J. H., & Zinkhan, G. M. (2003). FEATURES OF WEBSITE DESIGN, PERCEPTIONS OF WEBSITE QUALITY, AND PATRONAGE BEHAVIOR. ACME 2003 Proceedings, 106–114.
State Council of the People’s Republic of China. (2017, July 20). 国务院关于印发新一代人工智能发展规划的通知(国发〔2017〕35号)_政府信息公开专栏. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
Statista. (2023, September 14). China: Online shoppers 2023. Statista. https://www.statista.com/statistics/277391/number-of-online-buyers-in-china/
Surya, L. (2015, May). An Exploratory Study of AI and Big Data, and Its Future in the United States by Lakshmisri Surya: SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3785652
Tadayonrad, Y., & Ndiaye, A. B. (2023). A new key performance indicator model for demand forecasting in inventory management considering supply chain reliability and seasonality. Supply Chain Analytics, 3, 100026. https://doi.org/10.1016/j.sca.2023.100026
Toorajipour, R., Sohrabpour, V., Nazarpour, A., Oghazi, P., & Fischl, M. (2021). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research, 122, 502–517. https://doi.org/10.1016/j.jbusres.2020.09.009
Topol, E. (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Hachette UK.
Topol, E. J. (2019). High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25(1), Article 1. https://doi.org/10.1038/s41591-018-0300-7
Tseng, P.-Y., & Lee, S.-F. (2019). The Impact of Web Visual Aesthetics on Purchase Intention. 2019 IEEE Eurasia Conference on IOT, Communication, and Engineering (ECICE), 28–31. https://doi.org/10.1109/ECICE47484.2019.8942664
Turing, A. M. (1950). Computing Machinery and Intelligence. Mind, 59(236), 433–460.
Ucar, A., Karakose, M., & Kırımça, N. (2024). Artificial Intelligence for Predictive Maintenance Applications: Key Components, Trustworthiness, and Future Trends. Applied Sciences, 14(2), Article 2. https://doi.org/10.3390/app14020898
Venkatesh, V., & Morris, M. G. (2000). Why Don’t Men Ever Stop to Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior. MIS Quarterly, 24(1), 115–139. https://doi.org/10.2307/3250981
Venkateswaran, D. N. (2023). AI-DRIVEN PERSONALIZATION IN CUSTOMER RELATIONSHIP MANAGEMENT: CHALLENGES AND OPPORTUNITIES. . . Vol., 18.
Verhoef, P. C., Kannan, P. k., & Inman, J. J. (2015). From Multi-Channel Retailing to Omni-Channel Retailing: Introduction to the Special Issue on Multi-Channel Retailing. Journal of Retailing, 91(2), 174–181. https://doi.org/10.1016/j.jretai.2015.02.005
Verma, S., & Yadav, N. (2022, January 31). Past, Present, and Future of Electronic Word of Mouth (EWOM)—Sanjeev Verma, Neha Yadav, 2021. https://journals.sagepub.com/doi/full/10.1016/j.intmar.2020.07.001
Wang, N., Wang, H., Jia, Y., & Yin, Y. (2018). Explainable Recommendation via Multi-Task Learning in Opinionated Text Data. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 165–174. https://doi.org/10.1145/3209978.3210010
Wang, W., & Benbasat, I. (2008). Attributions of Trust in Decision Support Technologies: A Study of Recommendation Agents for E-Commerce. Journal of Management Information Systems, 24(4), 249–273. https://doi.org/10.2753/MIS0742-1222240410
Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: Service robots in the frontline. Journal of Service Management, 29(5), 907–931. https://doi.org/10.1108/JOSM-04-2018-0119
Wu, X., & Gereffi, G. (2018). Amazon and Alibaba: Internet Governance, Business Models, and Internationalization Strategies. In R. van Tulder, A. Verbeke, & L. Piscitello (Eds.), International Business in the Information and Digital Age (Vol. 13, pp. 327–356). Emerald Publishing Limited. https://doi.org/10.1108/S1745-886220180000013014
Xue, Q., Xu, M., & Mullen, C. (2020). Governance of Emerging Autonomous Driving Development in China. Transportation Research Record, 2674(6), 281–290. https://doi.org/10.1177/0361198120918871
Yeolib Kim, & Peterson, R. A. (2017). A Meta-analysis of Online Trust Relationships in E-commerce. Journal of Interactive Marketing (Elsevier), 38, 44–54. https://doi.org/10.1016/j.intmar.2017.01.001
Yim, M. Y.-C., & Park, S.-Y. (2019). “I am not satisfied with my body, so I like augmented reality (AR)”: Consumer responses to AR-based product presentations. Journal of Business Research, 100, 581–589. https://doi.org/10.1016/j.jbusres.2018.10.041
Yin, J., & Qiu, X. (2021). AI Technology and Online Purchase Intention: Structural Equation Model Based on Perceived Value. Sustainability, 13(10), Article 10. https://doi.org/10.3390/su13105671
Yin, J., & Qiu, X. (2021). Influence Mechanism Research on the AI Marketing Technology of Online Shopping Platforms on Consumers’ Purchase Intention. 833–838. https://doi.org/10.2991/assehr.k.210121.163
Zande, J. V. (2024, May 24). SAP BrandVoice: Ecommerce: Electronic Commerce Definition, Benefits, Types, Examples. Forbes. https://www.forbes.com/sites/sap/2024/05/24/ecommerce-electronic-commerce-definition-benefits-types-examples/
Zhen, L. Z., Pandey, A., Traiwanmakij, S., Pechinthorn, K., & Samarkjarn, J. (2021). FACTORS RELATED TO CHINESE CUSTOMERS’ ONLINE PURCHASE INTENTION: THE CASE STUDY OF JINGDONG.COM ONLINE SHOPPING CUSTOMER IN CHINA. International Journal of Economics, Business and Accounting Research (IJEBAR), 5(1), Article 1. https://doi.org/10.29040/ijebar.v5i1.1721
Zhiyong Cheng, Xiaojun Chang, Lei Zhu, Kanjirathinkal, R. C., & Kankanhalli, M. (2019). MMALFM: Explainable Recommendation by Leveraging Reviews and Images. ACM Transactions on Information Systems, 37(2), 16–43. https://doi.org/10.1145/3291060
Zhou, F., Liu, Y., & Chen, R. (2021). Research on Collaborative Innovation of Intelligent Connected Vehicles Industry Based on Test Field: Embedded Case Study from the Perspective of Open Innovation. Sustainability, 13(11), Article 11. https://doi.org/10.3390/su13115880
Published
Issue
Section
License
Copyright (c) 2025 Cheuk Yin Chang (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication Agreement
This Publication Agreement ("Agreement") is made between the author(s) ("Author") and the SBS Journal of Applied Business Research ("Journal"). By submitting a manuscript for publication, the Author agrees to the following terms:
1. Grant of License
The Author retains full copyright ownership of the submitted and published work. The Author grants the Journal a non-exclusive license to publish, distribute, and archive the article in any format or medium, including but not limited to online and print versions.
2. Open Access and Licensing
All articles published in the Journal are fully open access under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This means that:
• The work can be freely used, shared, and adapted by anyone, provided that proper attribution is given to the original Author.
• The full license terms can be found at https://creativecommons.org/licenses/by/4.0/.
• No additional restrictions are placed on the use of published articles.
3. Author Responsibilities and Warranties
The Author guarantees that:
• The submitted work is original and has not been published or submitted for publication elsewhere.
• The work does not infringe on any third-party rights, including copyright, trademark, or proprietary rights.
• All necessary permissions for copyrighted materials used in the manuscript (e.g., figures, tables) have been obtained.
• The manuscript complies with ethical research standards and does not contain any form of plagiarism or falsified data.
4. Editorial and Publication Process
• The Journal reserves the right to perform editorial revisions for clarity, formatting, and consistency while maintaining the integrity of the Author’s work.
• The publication of an article is subject to peer review, and acceptance is not guaranteed upon submission.
5. Retraction and Corrections
• The Journal follows COPE (Committee on Publication Ethics) guidelines and reserves the right to retract, correct, or withdraw an article in cases of misconduct, errors, or ethical concerns.
6. Governing Law
This Agreement is governed by the laws of Switzerland. Any disputes arising under this Agreement shall be resolved in the courts of Zurich, Switzerland.
7. Agreement Acceptance
By submitting a manuscript, the Author acknowledges and agrees to the terms outlined in this Agreement.
Editor-In-Chief
Prof. Dr. Milos Petkovic